

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 129 (2008) 280-285

www.elsevier.com/locate/fluor

Synthesis of fluoroalkyl-δ-lactones from polyfluoroalkyl iodides and 5-hexenoic acids

Xiang Fang^a, Qi Ying^a, Yang Chen^a, Xueyan Yang^a, Xianjin Yang^{a,b}, Fanhong Wu^{a,b,*}

^a Laboratory for Advanced Material and Institute of fine chemicals. School of Chemistry and Molecular Engineering.

East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received 3 December 2007; received in revised form 27 December 2007; accepted 27 December 2007

Available online 4 January 2008

Abstract

The polyfluoroalkyl-lactonization of 5-hexenoic acids with the polyfluoroalkyl iodides initiated by sodium dithionite was carried out in aqueous appeared to be unexpected minor product in sulfinatodehalogenation reagents. © 2008 Elsevier B.V. All rights reserved.

Keywords: 5-Hexenoic acids; Polyfluoroalkyl iodide; δ-valerolactone; Sodium dithionite; Polyfluoroalkyl-lactonization

1. Introduction

Functionalized valerolactones are present in a large amount of natural products and biologically active compounds such as compactin, mevinclin and close relatives, collectively the mevinic acids [1] and artemisinin, which is used to treat multidrug resistant strains of falciparum malaria [2]. Introduction of fluorine into lactones is of great interest to synthetic chemists due to two facts. First, fluorination of natural products and drugs has demonstrated significant improvements of activities and properties. Second, functionalized lactones have been found as substructures in a variety of biologically active natural products including flavor components, sex attractant pheromones of different insects, plant-growth regulators, alkaloids, macrocyclic antibiotics, and lignanlactones [3,4]. Brace described that thermally-induced reaction of C₆F₁₃I to 5hexenoic acid in ethyl acetate at 175-200 °C (bis-tert-butyl peroxide) afforded 6-(perfluorohexyl)-5-hydroxyhexanoic acid δ -lactone in 60% yield [5].

The addition reaction of polyfluoroalkyl iodides with unsaturated compounds, such as olefins and alkynes, initiated by sulfinatodehalogenation reagents (sodium dithionite) has been thoroughly studied in our laboratory [6]. Herein we extended our research to 5-hexenoic acids, the corresponding polyfluoroalkylated δ -valerolactones were obtained as the major products and the unexpected elimination products were obtained as minor products under the same reaction conditions. The detailed experimental results and analysis are described here.

2. Results and discussion

Free radical-induced reaction of R_{fI} (*n*- $C_{6}F_{13}$) to 5-hexenoic acid gave the primary adduct RfCH2CHI(CH2)3COOH (6da) in excellent yield, using AIBN [7] copper powder [8] and sulfuroxy-acid salts [6b] as initiator. Base induced S_N2 internal reaction of β-iodo(perfluoroalkyl)-alkanoic acid (6da) would assume a conformation in which the carboxylate anion approaches the back side of the CHI in order to smoothly displace the iodide ion and form a δ -valerolactone (3da), also base induced a likely possible dehydrohalogenation of the adduct would give the α,β olefin (5da) by attack of the proton adjacent to the strong electron withdrawing perfluoroalkyl (R_f) group [9] or give the β,γ olefin (4da) by attack of the proton

^{*} Corresponding author at: Laboratory for Advanced Material and Institute of fine chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Tel.: +86 21 64253530.

E-mail address: wfh@ecust.edu.cn (F. Wu).

^{0022-1139/\$ -} see front matter (C) 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2007.12.004

Scheme 1.

adjacent to the carboxyl group (Scheme 1). The reduction of polyfluoroalkyl adduct had been reported by Qiu and Burton [10]. A mixture of corresponding reduction product and β , γ olefin product was formed in a variety of solvents.

Base induced reaction of intermediate adduct **6da** was attempted under various conditions. With K_2CO_3 in stronger coordinating solvent DMF, a mixture of $C_6F_{13}CH=CH(CH_2)_3$ COOH **5da** and $C_6F_{13}CH=CH(CH_2)_2COOH$ **4da** was obtained, in poorly coordinating solvent acetonitrile solution, only **4da** was obtained. In sodium dithionite reagents, **3da** was obtained as major product and only **4da** was obtained as minor product.

Identification of **3da** as δ -lactone was based on its infrared spectrum which showed the carbonyl frequency at 1740 cm⁻¹ [11] and ¹H NMR spectrum, which showed the anticipated multi-pattern for H₅ at 4.77–4.71 ppm. ¹³C NMR spectrum of **5da** showed the anticipated three line pattern for C₆ of **5da** at 118.7 ppm showing 23.2 Hz coupling with CF₂ group, ¹³C NMR spectrum for C₆ of **4da** at 35.5 ppm with J = 22.6 Hz. Also ¹H NMR spectrum of **4da** showed proton resonances of

the expected complexity and shifts. The doublet of triplet at 2.79 ppm could be interpreted as arising from a 18.1 Hz coupling of H_6 with F_7 and 7.0 Hz coupling of H_6 with the proton H_5 (Table 1).

In order to obtain the δ -valerolactone in one-pot, the polyfluoroalkylation-lactonization reaction in the presence of different bases and solvents was investigated. The results were summarized in Table 2. At room temperature the adduct **6da** could not be converted completely even in different bases (Table 2, entries 1–5). While with high temperature, the adduct **6da** disappeared (Table 2, entries 6–8). It was found that the mixture at reflux overnight after the addiction reaction at 0 °C in aqueous acetonitrile solution (CH₃CN/H₂O = 3:1 (v/v)) gave the best results, with **3da** in 68% yield and **4da** in 30% yield (Table 2, entry 7).

When R_fI reacted with 5-hexenoic acid and analogues with a substituent at the C-2 position, separation of **3** and **4** proved troublesome, which result in the 50–88% of GC yields of **3** while the actual isolated yields were much low, only 16–27% (Scheme 2 and Table 3). The reason was the tailing effect of **4** and the mixture of most **3** and **4** was obtained when the crude product was purified by column chromatography. The elimination products without substituent were obtained in very small amount with 1.7:1–5.5:1 *E*:*Z*-isomers and the elimination products with a substituent at the C-2 position could not be separated sufficiently.

The results indicated that for 2-substituted 5-hexenoic acids **2b** or **2c**, a mixture of *trans-/cis*-isomers was obtained. Analysis of the crude product by ¹H NMR spectroscopy and integration of signals attributed to proton on C-3 indicated the *trans/cis* ratio of almost 1:1. The NMR signal of the proton on C-3 exhibited a multiplet in lower field for *trans*-isomer than for *cis*-isomer [6d].

Table 1 ¹H NMR, ¹³C NMR and IR spectra of δ -valerolactone **3da** and olefins **5da**, **4da**

		δ (ppm)	J (Hz)	$\nu (\text{cm}^{-1})$
$C_{6}F_{13}$ 5 1 2	H ₅	4.77-4.71		1740
3 3da	C ₆ C ₅	37.8 74.0	21.1	
$C_6F_{13}CH=CHCH_2CH_2CH_2COOH$ 6 5 4 3 2 1	H ₆	6.43-6.36		
5da	H5 C6 C5	5.70–5.61 118.7 136.9	23.2	
$C_6F_{13}CH_2CH=CHCH_2CH_2COOH$ 7 6 5 4 3 2 1	H ₆	2.79	$J_{\rm H-F} = 18.1, \ J_{\rm H-H} = 7.0$	1715
4da	H5 H4 C6 C5	5.78–5.72 5.53–5.46 35.5 118.9	22.6	

Table 2
The fluoroalkylation of 5-hexenoic acid initiated by sodium dithionite

Entry	Base	Solvent	Temperature (°C)	Yield ^a			
				6da	3da	5da	4da
1	_	CH ₃ CN/H ₂ O	R.T.	51	20		21
2	NaHCO ₃	CH ₃ CN/H ₂ O	R.T.	42	31		24
3	K ₂ CO ₃	CH ₃ CN/H ₂ O	R.T.	20	33		41
4	NaOH	CH ₃ CN/H ₂ O	0	59	20		19
5	NaOH	DMF/H ₂ O	R.T.	20	20	20	22
6	NaOH	DMF/H ₂ O	0-80	0	3	47	48
7	NaOH	CH ₃ CN/H ₂ O	0-80	0	68		30
8	NaOH	CH ₃ CN/H ₂ O	R.T80	0	55		41

^a Determined by GC.

All δ -valerolactones exhibited a typical AB pattern signal in the ¹⁹F NMR spectra. For example, ¹⁹F NMR of **3aa** exhibited two doublets of multiplets at -117.5 ppm and at -118.3 ppm. The lower field signal is a doublet of doublet of doublet with J = 267.9, 28.2, 9.4 Hz. The higher field signal is also a doublet of doublet of doublet with J = 267.9, 28.2, 9.4 Hz.

In conclusion, a convenient and efficient method of polyfluoroalkyl-lactonization by the reaction of 5-hexenoic acids with polyfluoroalkyl iodides initiated by sodium dithionite has been developed through sequential radical polyfluoroalkylation and nucleophilic cyclization, and unexpected $R_fCH_2CH=CH(CH_2)_2COOH$ were obtained as minor products.

3. Experimental

All melting points were uncorrected. IR spectra were measured on a Nicolet Magna IR-550 spectrometer using

Table 3 Data of the reaction of R_{f} **1** with 5-hexenoic acids **2**

potassium bromide pellet. High-resolution mass spectra were carried out on a Finnigan GC-MS-4021 spectrometer. ¹H NMR (500 MHz) and ¹³C (125.8 MHz) spectra were recorded on a Bruker AC-500 spectrometer with Me₄Si as internal standard. ¹⁹F NMR spectra were obtained on Bruker AC-500 (470 MHz) spectrometer in CDCl₃ with CFCl₃ as external standard, downfield shifts being designated as negative. All chemical shifts (δ) are expressed in ppm, coupling constants (*J*) are given in Hz.

3.1. General procedure for the reaction of 5-hexenoic acids with polyfluoroalkyl iodides

5-Hexenoic acid (2 mmol) was dissolved in aqueous sodium hydroxide solution freshly prepared from 100 mg sodium hydroxide in 1 mL water and stirred while acetonitrile (3 mL) and $R_{\rm f}I$ (2.2 mmol) was added. To the solution was added

Entry	Substance	R	R _f	Product	Yield of 3 (%) ^a	Yield of $3 (\%)^{\mathrm{b}}$	Yield of $4 (\%)^a$	<i>E</i> : <i>Z</i> of 4
1	2a	Н	C_2F_5	3aa	88	24	10	3:1 ^c
2	2a	Н	ClC_2F_4	3ba	64	22	32	2.5:1 ^c
3	2a	Н	ClC_4F_8	3ca	51	20	39	1.7:1 ^c
4	2a	Н	C ₆ F ₁₃	3da	60	22	35	5.5:1 ^c
5	2b	Et	C_2F_5	3ab	56	19	39	
6	2b	Et	ClC_2F_4	3bb	59	18	37	
7	2b	Et	ClC ₄ F ₈	3cb	67	20	28	
8	2b	Et	$C_{6}F_{13}$	3db	50	18	43	
9	2c	Bn	C_2F_5	3ac	71	20	22	
10	2c	Bn	ClC_2F_4	3bc	62	20	34	
11	2c	Bn	ClC ₄ F ₈	3cc	80	16	17	
12	2c	Bn	C ₆ F ₁₃	3dc	82	27	13	

^a Determined by GC.

^b Isolated yields.

^c Based on ¹⁹F and ¹³C NMR.

sodium dithionite (440 mg) and sodium bicarbonate (210 mg). The mixture was stirred at 0 °C for 2–5 h to complete the reaction; after at reflux overnight the mixture was treated with about 10 mL of water and extracted with 3×5 mL of ether. The combined organic layer was washed with saturated brine solution and dried over anhydrous sodium sulfate. After evaporation of ether, the crude product was subjected to column chromatography to give the pure product.

3.1.1. 5-(2,2,3,3,3-Pentafluoropropyl)-δ-valerolactone (*3aa*)

Colorless oil; IR (cm⁻¹, KBr) 2932, 1743 (δ -lactone), 1197, 719. ¹H NMR (CDCl₃, 500 MHz) δ 4.75–4.68 (1H, m), 2.70–2.53 (1H, m), 2.55–2.45 (1H, m), 2.38–2.27 (1H, m), 2.14–2.08 (1H, m), 2.02–1.92 (2H, m), 1.73–1.64 (2H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ 170.8, 126.5–113.3 (2C, m), 74.0, 37.6 (t, J = 21 Hz), 29.8, 29.1, 19.0. ¹⁹F NMR (CDCl₃, 470 MHz) δ –86.8 (3F, s), –117.5 (1F, ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 9.4$ Hz), –118.3 (1F, ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 9.4$ Hz). EI-MS (m/z) 232 (M⁺, 100), 188 (21). HRMS cacld for C₈H₉O₂F₅: 232.0523, found: 232.0523.

3.1.2. 7,7,8,8,8-Pentafluorooct-4-enoic acid (4aa)

Colorless oil; IR (cm⁻¹, KBr) 2932, 1716, 1200, 1119, 715. ¹H NMR (CDCl₃, 500 MHz) δ 5.71–5.62 (1H, m), 5.48–5.35 (1H, m), 2.68 (2H, td, J = 17.4 Hz, J = 7.0 Hz), 2.46–2.27 (4H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ (*E*-isomer) 179.7, 136.7, 119.0, 124.6–113.2 (2C, m), 35.2 (t, J = 22.4 Hz), 34.0, 28.1; (*Z*-isomer) 181.1, 134.9, 118.2, 124.6–113.2 (2C, m), 34.4, 31.1 (t, J = 22.1 Hz), 29.1. ¹⁹F NMR (CDCl₃, 470 MHz) δ (*E*-isomer) –85.8 (3F, s), –118.2 (2F, t, J = 16.5 Hz); (*Z*-isomer) –86.4 (3F, s), –119.3 (2F, t, J = 18.8 Hz). EI-MS (*m*/*z*) 232 (M⁺, 8), 212 (22), 192 (29), 60 (100). HRMS cacld for C₈H₉O₂F₅: 232.0523, found: 232.0515.

3.1.3. 5-(2,2,3,3-Tetrafluoro-3-chloropropyl)-δ-valerolactone (**3ba**)

Colorless oil; IR (cm⁻¹, KBr) 2973, 1724 (δ -lactone), 1259, 1155, 1052, 939, 767. ¹H NMR (CDCl₃, 500 MHz) δ 4.76–4.70 (1H, m), 2.71–2.58 (2H, m), 2.54–2.47 (1H, m), 2.43–2.31 (1H, m), 2.15–2.08 (1H, m), 2.03–1.90 (2H, m), 1.73–1.63 (1H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ 170.9, 123.9 (tt, *J* = 298.6 Hz, *J* = 37.0 Hz), 116.6 (tt, *J* = 256.3 Hz, *J* = 33.8 Hz), 74.3, 37.4 (t, *J* = 21.4 Hz), 29.7, 29.0, 18.9. ¹⁹F NMR (CDCl₃, 470 MHz) δ –72.8 (2F, s), –112.8 (1F, ddd, *J*_{F–F} = 258.5 Hz, *J*_{F–H} = 28.2 Hz, *J*_{F–H} = 9.4 Hz), –114.2 (1F, ddd, *J*_{F–F} = 258.5 Hz, *J*_{F–H} = 28.2 Hz, *J*_{F–H} = 9.4 Hz). EI-MS (*m*/*z*) 250 (M + 2⁺, 7), 248 (M⁺, 21), 206 (30), 204 (100). HRMS cacld for C₈H₉O₂F₄Cl: 248.0227, found: 248.0228.

3.1.4. 8-Chloro-7,7,8,8-tetrafluorooct-4-enoic acid (4ba)

Colorless oil; IR (cm⁻¹, KBr) 2926, 1714, 1256, 1152. ¹H NMR (CDCl₃, 500 MHz) δ 5.77–5.69 (1H, m), 5.54–5.46 (1H, m), 2.80 (2H, td, *J* = 17.6Hz, *J* = 6.7 Hz), 2.51–2.38 (4H, m). ¹³C NMR (CDCl₃, 125.8 MHz) (*E*-isomer) δ 179.3, 136.5, 119.4, 126.8–115.5 (2C, m), 35.1 (t, *J* = 22.9 Hz), 34.0, 28.1; (*Z*-isomer) 181.0, 134.7, 118.8, 126.8–115.5 (2C, m), 34.3, 31.0 (t, J = 22.8 Hz), 29.1. ¹⁹F NMR (CDCl₃, 470 MHz) (*E*-isomer) δ –71.5 (2F, s), –114.1 (2F, t, J = 16.5 Hz); (*Z*-isomer) δ –72.0 (2F, s), –115.3 (2F, t, J = 16.5 Hz). EI-MS (*m*/*z*) 251 (M + 2⁺, 2), 249 (M⁺, 6), 192 (39), 60 (100). HRMS cacld for C₈H₉O₂F₄Cl: 248.0227, found: 248.0225.

3.1.5. 5-(2,2,3,3,4,4,5,5-Octafluoro-5-chloropentyl)-δ-valerolactone (**3ca**)

Colorless oil; IR (cm⁻¹, KBr) 2959, 1741 (δ-lactone), 1186, 841, 697. ¹H NMR (CDCl₃, 500 MHz) δ 4.77–4.71 (1H, m), 2.70–2.56 (2H, m), 2.53–2.47 (1H, m), 2.45–2.30 (1H, m), 2.15–2.08 (1H, m), 2.03–1.89 (2H, m), 1.73–1.63 (1H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ 170.9, 126.2–103.6 (4C, m), 74.1, 37.8 (t, J = 20.4 Hz), 30.0, 29.2, 18.9. ¹⁹F NMR (CDCl₃, 470 MHz) δ –69.0 (2F, t, J = 13.4 Hz), –112.9 (1F, ddd, $J_{F-F} = 272.6$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 14.1$ Hz), –114.2 (1F, ddd, $J_{F-F} = 272.6$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 14.1$ Hz), –120.8 (2F, s), –123.9 (2F, s). EI-MS (*m*/*z*) 350 (M + 2⁺, 2), 348 (M⁺, 6), 306 (20), 304 (61), 99 (100). HRMS cacld for C₁₀H₉O₂F₈Cl: 348.0163, found: 348.0163.

3.1.6. 7,7,8,8,9,9,10,10,10-Nonafluorodec-4-enoic acid (**4ca**)

Colorless oil; IR (cm⁻¹, KBr) 2962, 1716, 1236, 1134, 798. ¹H NMR (CDCl₃, 500 MHz) δ 5.72–5.64 (1H, m), 5.49–5.37 (1H, m), 2.73 (2H, td, *J* = 17.5 Hz, *J* = 6.9 Hz), 2.42–2.38 (4H, m). ¹³C NMR (CDCl₃, 125.8MHz) δ (*E*-isomer) 179.4, 137.0, 118.8, 122.1–109.0 (4C, m), 35.4 (t, *J* = 22.5 Hz), 34.0, 28.2; (*Z*-isomer) 180.1, 135.1, 118.2, 122.1–109.0 (4C, m), 34.3, 31.3 (t, *J* = 22.2 Hz), 29.1. ¹⁹F NMR (CDCl₃, 470MHz) δ (*E*-isomer) -82.0 (2F, s), -114.5 (2F, t, *J* = 14.1 Hz), -125.0 (2F, s), -127.1 (2F, s); (*Z*-isomer) -82.0 (2F, s), -115.6 (2F, t, *J* = 14.1Hz), -125.5 (2F, s), -127.1 (2F, s). EI-MS (*m*/*z*) 350 (M + 2⁺, 2), 348 (M⁺, 6), 60 (100). HRMS cacld for C₁₀H₉O₂F₈Cl: 348.0163, found: 348.0163.

3.1.7. 5-(2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptyl)-δ-valerolactone (**3da**)

White solid; m.p. 56–57 °C. IR (cm⁻¹, KBr) 2920, 1740 (δlactone), 1252, 1144, 699. ¹H NMR (CDCl₃, 500 MHz) δ 4.77– 4.71 (1H, m), 2.70–2.58 (2H, m), 2.55–2.48 (1H, m), 2.46–2.31 (1H, m), 2.13–2.08 (1H, m), 2.03–1.93 (2H, m), 1.73–1.63 (1H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ 170.8, 122.6–106.0 (6C, m), 74.0, 37.8 (t, J = 21.1 Hz), 29.8, 29.2, 19.0. ¹⁹F NMR (CDCl₃, 470 MHz) δ –81.9 (3F, t, J = 11.8 Hz), –113.1 (1F, ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 9.4$ Hz), –114.3 (1F, ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 9.4$ Hz), –122.9 (2F, s), –124.0 (2F, s), –124.8 (2F, s), –127.3 (2F, s). EI-MS (m/z) 432 (M⁺, 2), 388 (100). HRMS cacld for C₁₂H₉O₂F₁₃: 432.0395, found: 432.0394.

3.1.8. 7,7,8,8,9,9,10,10,11,11,12,12,12-

Tridecafluorododec-4-enoic acid (4da)

7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododec-5enoic acid (**5da**)

Colorless oil; IR (cm⁻¹, KBr) 2938, 1715, 1241, 1144, 709. ¹H NMR (CDCl₃, 500 MHz) δ 6.43–6.36 (1H, m), 5.78–5.72 (0.7H, m), 5.70–5.61 (1H, m), 5.53–5.46 (0.7H, m), 2.79 (1.4H, td, J = 18.1 Hz, J = 7.0 Hz), 2.49–2.46 (2H, m), 2.45–2.38 (3.4H, m), 2.32–2.26 (1.4H, m), 1.86–1.79 (2H, m). ¹³C NMR (CDCl₃, 125.8 MHz) **4da** δ 180.1, 136.9, 118.7 (t, J = 23.2 Hz), 121.4–106.9 (6C, m), 33.7, 31.8, 23.6; **5da** δ 179.8, 142.4 (t, J = 8.9 Hz), 118.9, 121.4–106.9 (6C, m), 35.5 (t, J = 22.6 Hz), 34.0, 28.2. ¹⁹F NMR (CDCl₃, 470 MHz) **4da** δ –82.1 (3F, t, J = 9.9 Hz), -112.7 (2F, s), -122.9 (2F, s), -124.2 (2F, s), -124.8 (2F, s), -127.4 (2F, s); **5da** δ –82.1 (3F, t, J = 9.9 Hz), -114.6 (2F, s), -123.2 (2F, s), -124.4 (2F, s), -124.8 (2F, s), -127.4 (2F, s), -124.4 (2F, s), -124.8 (2F, s), -127.4 (2F, s), -124.4 (2F, s), -124.8 (2F, s), -127.4 (2F, s), EI-MS (m/z) 432 (M⁺, 14), 412 (76), 392 (100). HRMS cacld for C₁₂H₉O₂F₁₃: 432.0395, found: 432.0396.

3.1.9. 2-Ethyl-5-(2,2,3,3,3-pentafluoropropyl)-δ-valerolactone (**3ab**)

Colorless oil; IR (cm⁻¹, KBr) 2970, 1742 (δ-lactone), 1196, 795. 719. ¹H NMR (CDCl₃. 500 MHz) δ 4.74–4.66 (0.6H + 0.4H, m), 2.65-2.51 (0.6H + 0.4H, m), 2.48-2.34(1.2H, m), 2.34–2.23 (0.8H, m), 2.21–2.06 (1.2H + 0.8H, m), 2.01-1.86 (1.2H, m), 1.80-1.53 (0.6H + 0.8H + 0.8H, m), 1.52-1.44 (0.6H, m), 1.01 (1.2H, t, J = 7.5 Hz), 0.98 (1.8H, t, J = 7.5 Hz). ¹³C NMR (CDCl₃ 125.8 MHz) δ cis 172.9, 123.9– 119.8 (2C, m), 74.8, 42.6, 37.9 (t, J = 20.9 Hz), 30.3, 25.4, 24.4, 11.7; trans 174.7, 117.5-113.6 (2C, m), 71.4, 40.1, 37.1 (t, J = 21.1 Hz), 28.1, 25.4, 23.3, 12.2. ¹⁹F NMR (CDCl₃, 470 MHz) δ cis -86.8 (3F, s), -116.7 (1F, ddd, $J_{F-F} = 267.9$ Hz, J_{F-F} $_{\rm H}$ = 28.2 Hz, $J_{\rm F-H}$ = 9.4 Hz), -118.4 (1F, ddd, $J_{\rm F-F}$ = 267.9 Hz, $J_{\text{F-H}} = 28.2 \text{ Hz}, J_{\text{F-H}} = 9.4 \text{ Hz}$; trans -86.8 (3F, s), -116.9 (1F, 1000 Hz)ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 9.4$ Hz), -118.5 (1F, ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 9.4$ Hz). EI-MS (m/z) 260 $(M^+, 2)$, 232 (100). HRMS cacld for C₁₀H₁₃O₂F₅: 260.0836, found: 260.0836.

3.1.10. 2-Ethyl-5-(2,2,3,3-tetrafluoro-3-chloropropyl)-δ-valerolactone (**3bb**)

White solid; m.p. 50–51 °C. IR (cm⁻¹, KBr) 2972, 1725 (δlactone), 1153, 1097, 939. ¹H NMR (CDCl₃, 500 MHz) δ 4.74– 4.66 (0.5H + 0.5H, m), 2.70–2.56 (0.5H + 0.5H, m), 2.44–2.30 (1H + 1H, m), 2.18–2.06 (1H + 1H, m), 2.0–1.91 (1H, m), 1.76-1.56 (0.5H + 1H + 1H, m), 1.50-1.45 (0.5H, m), 1.01 (1.5H, J = 7.5 Hz), 0.98 (1.5H, J = 7.5 Hz).¹³C NMR (CDCl₃) 125.8 MHz) δ cis 172.3, 125.4–120.8 (2C, m), 74.5, 42.0, 37.2 (t, J = 21.3Hz), 29.6, 24.8, 22.6, 11.0; trans 174.2, 120.6–116.0 (2C, m), 71.1, 39.4, 36.3 (t, J = 21.4Hz), 27.5, 24.8, 23.8, 11.5. ¹⁹F NMR (CDCl₃, 470 MHz) δ *cis* -72.7 (2F, s), -112.6 (1F, ddd, $J_{F-F} = 258.5 \text{ Hz}, J_{F-H} = 30.6 \text{ Hz}, J_{F-H} = 7.1 \text{ Hz}), -114.3$ (1F, ddd, $J_{F-F} = 258.5 \text{ Hz}$, $J_{F-H} = 28.2 \text{ Hz}$, $J_{F-H} = 9.4 \text{ Hz}$); *trans* -72.7 (2F, s), -112.8 (1F, ddd, $J_{F-F} = 258.5$ Hz, J_{F-} $_{\rm H}$ = 30.6 Hz, $J_{\rm F-H}$ = 7.1 Hz), -114.3 (1F, ddd, $J_{\rm F-F}$ = 258.5 Hz, $J_{\text{F-H}} = 28.2 \text{ Hz}, J_{\text{F-H}} = 9.4 \text{ Hz}$). EI-MS (*m*/*z*) 276 (M⁺, 2), 250 (29), 248 (100). HRMS cacld for C₁₀H₁₃O₂F₄Cl: 276.0540, found: 276.0540.

3.1.11. 2-Ethyl-5-(2,2,3,3,4,4,5,5-octafluoro-5chloropentyl)-δ-valerolactone (**3cb**)

White solid; m.p. 59–60 °C. IR (cm⁻¹, KBr) 2953, 1731 (δ -lactone), 1186, 1128, 795, 695. ¹H NMR (CDCl₃, 500 MHz) δ

4.76-4.68 (1H, m), 2.71–2.55 (1H, m), 2.46–2.36 (2H, m), 2.19–2.05 (2H, m), 2.01–1.91 (1H, m), 1.77–1.58 (3H, m), 0.98 (3H, t, J = 7.5 Hz). ¹³C NMR (CDCl₃, 125.8 MHz) δ 171.2, 121.1–114.1 (4C, m), 73.2, 40.9, 36.4 (t, J = 21.0 Hz), 28.7, 23.8, 21.6, 10.0. ¹⁹F NMR (CDCl₃, 470 MHz) δ –69.0 (2F, t, J = 12.7 Hz), -112.5 to -114.7 (2F, m), -120.8 (2F, s), -123.9 (2F, s). EI-MS (*m*/*z*) 376 (M⁺, 2), 350 (30), 348 (100). HRMS cacld for C₁₂H₁₃O₂F₈Cl: 376.0476, found: 376.0476.

3.1.12. 2-Ethyl-5-(2,2,3,3,4,4,5,5,6,6,7,7,7-

tridecafluoroheptyl)- δ -valerolactone (**3db**)

White solid; m.p. 60–61 °C. IR (cm⁻¹, KBr) 2981, 1728 (δ-lactone), 1206, 1146, 702, 659. ¹H NMR (CDCl₃, 500 MHz) δ 4.76–4.68 (0.5H + 0.5H, m), 2.71–2.56 (0.5H + 0.5H, m), 2.47–2.25 (1H + 1H, m), 2.22–2.06 (1H + 1H, m), 2.01–1.87 (1H, m), 1.81–1.56 (0.5H + 1H + 1H, m), 1.54–1.45 (0.5H, m), 1.01 (1.5H, t, J = 7.4 Hz), 0.98 (1.5H, t, J = 7.0 Hz). ¹³C NMR (CDCl₃, 125.8 MHz) δ *cis* 174.7, 120–108 (6C, m), 71.4, 40.1, 37.3 (t, J = 21.0 Hz), 28.2, 24.4, 23.3, 12.1; *trans* 172.9, 120–108 (6C, m), 74.8, 42.6, 38.1 (t, J = 20.8 Hz), 30.4, 29.8, 25.5, 11.7. ¹⁹F NMR (CDCl₃, 470 MHz) δ –81.7 (3F, t, J = 9.4 Hz), -112.4 to –114.6 (2F, m), –122.7 (2F, s), –123.8 (2F, s), –124.5 (2F, s), 127.1 (2F, q, J = 9.4 Hz). EI-MS (m/z) 460 (M⁺, 3), 432 (100). HRMS cacld for C₁₄H₁₃O₂F₁₃: 460.0708, found: 460.0703.

3.1.13. 2-Benzyl-5-(2,2,3,3,3-pentafluoropropyl)-δ-valerolactone (**3ac**)

Colorless oil; IR (cm⁻¹, KBr) 2932, 1741 (δ-lactone), 1198, 1096, 746, 702. ¹H NMR (CDCl₃, 500 MHz) δ 7.33-7.29 (2.5H, m), 7.25-7.18 (2.5H, m), 4.72-4.65 (0.5H, m), 4.64-4.57 (0.5H, m), 3.40 (0.5H, dd, J = 13.7 Hz, J = 4.0 Hz), 3.34 (0.5H, dd, J = 13.9 Hz, J = 4.4 Hz), 2.88-2.74 (1H, m), 2.71-2.63 (1H, m), 2.62-2.48 (1H, m), 2.36-2.17 (1H, m), 2.11-1.95 (1H + 0.5H, m), 1.92–1.85 (0.5H, m), 1.78–1.68 (0.5H, m), 1.68-1.53 (0.5H + 1H, m). ¹³C NMR (CDCl₃ 125.8 MHz) δcis 171.7, 138.4, 129.2, 128.6, 126.7, 120.1-118.3 (2C, m), 74.4, 42.5, 37.5, 37.2 (t, J = 21.0 Hz), 29.5, 24.8; trans 173.6, 138.6, 129.1, 128.6, 126.7, 118.0-116.2 (2C, m), 70.8, 39.9, 36.7, 36.3 (t, J = 21.2 Hz), 27.2, 22.3. ¹⁹F NMR (CDCl₃ 470 MHz) δ cis -86.8 (3F, s), -116.7 (1F, ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} =$ 28.2 Hz, $J_{\rm F-H}$ = 9.4 Hz), -118.3 (1F, ddd, $J_{\rm F-F}$ = 267.9 Hz, $J_{\rm F-H}$ _H = 28.2 Hz, J_{F-H} = 9.4 Hz); trans -86.7 (3F, s), -116.9 (1F, ddd, $J_{F-F} = 267.9 \text{ Hz}, J_{F-H} = 28.2 \text{ Hz}, J_{F-H} = 9.4 \text{ Hz}), -118.4$ (1F, ddd, $J_{F-F} = 267.9$ Hz, $J_{F-H} = 28.2$ Hz, $J_{F-H} = 9.4$ Hz). EI-MS (m/z) 322 $(M^+, 59)$, 91 (100). HRMS cacld for C₁₅H₁₅O₂F₅: 322.0992, found: 322.0992.

3.1.14. 2-Benzyl-5-(2,2,3,3-tetrafluoro-3-chloropropyl)-δ-valerolactone (**3bc**)

White solid; m.p. 50–53 °C. IR (cm⁻¹, KBr) 2958, 1720 (δ -lactone), 1094, 937, 741, 700. ¹H NMR (CDCl₃, 500 MHz) δ 7.34–7.28 (2.5H, m), 7.25–7.18 (2.5H, m), 4.73–4.66 (0.5H, m), 4.65–4.57 (0.5H, m), 3.40 (0.5H, dd, J = 13.7 Hz, J = 4.1 Hz), 3.33 (0.5H, dd, J = 13.9 Hz, J = 4.4 Hz), 2.86–2.76 (1H, m), 2.72–2.55 (1H + 1H, m), 2.40–2.22 (1H, m), 2.10–1.95 (1H + 0.5H, m), 1.92–1.85 (0.5H, m), 1.78–1.68

(0.5H, m), 1.68–1.52 (0.5H + 1H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ *cis* 171.7, 138.4, 129.2, 128.6, 126.7, 116.1–111.6 (2C, m), 74.7, 42.5, 37.6, 37.1 (t, *J* = 21.4 Hz), 29.6, 24.8; *trans* 173.7, 138.6, 129.1, 128.6, 126.7, 123.5–120 (2C, m), 71.2, 39.9, 36.7, 36.3 (t, *J* = 21.5 Hz), 27.2, 22.4. ¹⁹F NMR (CDCl₃, 470 MHz) δ *cis* –72.7 (2F, s), –112.6 (1F, ddd, *J*_{F-F} = 258.5 Hz, *J*_{F-H} = 28.2 Hz, *J*_{F-H} = 4.7 Hz), –114.2 (1F, ddd, *J*_{F-F} = 258.5 Hz, *J*_{F-H} = 28.2 Hz, *J*_{F-H} = 9.4 Hz); *trans* –72.7 (2F, s), –112.9 (1F, ddd, *J*_{F-F} = 258.5 Hz, *J*_{F-H} = 28.2 Hz, *J*_{F-H} = 28.2 Hz, *J*_{F-H} = 8.2 Hz, *J*_{F-H} = 9.4 Hz), –114.3 (1F, ddd, *J*_{F-F} = 258.5 Hz, *J*_{F-H} = 28.2 Hz, *J*_{F-H} = 9.4 Hz). EI-MS (*m*/*z*) 340 (M + 2⁺, 31), 338 (M⁺, 100), 91 (78). HRMS cacld for C₁₅H₁₅O₂F₄Cl: 338.0697, found: 338.0697.

3.1.15. 2-Benzyl-5-(2,2,3,3,4,4,5,5-octafluoro-5chloropentyl)-8-valerolactone (**3cc**)

White solid: m.p. 61–64 °C. IR (cm⁻¹, KBr) 2945, 1725 (δlactone), 1130, 742, 698. ¹H NMR (CDCl₃, 500 MHz) δ 7.33-7.29 (2.5H, m), 7.25-7.18 (2.5H, m), 4.75-4.68 (0.5H, m), 4.67-4.61 (0.5H, m), 3.40 (0.5H, dd, J = 13.7 Hz, J = 4.1 Hz), 3.34 (0.5H, dd, J = 13.9 Hz, J = 4.4 Hz), 2.86–2.76 (1H, m), 2.72-2.53 (1H + 1H, m), 2.40-2.20 (1H, m), 2.10-1.95 (1H + 0.5H)m), 1.92-1.84 (0.5H, m), 1.79-1.53 (0.5H + 0.5H + 1H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ cis 172.4, 139.1, 129.9, 129.3, 127.4, 114.9-109.8 (4C, m), 75.1, 43.2, 38.2, 38.1 (t, J = 20.9 Hz), 30.3, 25.5; trans 174.3, 139.3, 129.8, 129.3, 127.4, 125.1-120.0 (4C, m), 71.6, 40.6, 37.4, 37.2 (t, J = 21.1 Hz), 27.9, 23.0. ¹⁹F NMR (CDCl₃, 470 MHz) δ -69.0 (2F, t, J = 12.7 Hz), -112.5 to -114.7 (2F, m), -120.7(2F, s), -123.9 (2F, s). EI-MS (*m*/*z*) 440 (M + 2⁺, 12), 438 (M⁺, 38), 91 (100). HRMS cacld for C17H15O2F8Cl: 438.0633, found: 438.0633.

3.1.16. 2-Benzyl-5-(2,2,3,3,4,4,5,5,6,6,7,7,7tridecafluoroheptyl)-δ-valerolactone (**3dc**)

White solid; m.p. 75–77 °C. IR (cm⁻¹, KBr) 1720 (δ-lactone), 1192, 1144, 701. ¹H NMR (CDCl₃, 500 MHz) δ 7.34–7.29 (2.5H, m), 7.25–7.18 (2.5H, m), 4.75–4.68 (0.5H, m), 4.67–4.60 (0.5H, m), 3.40 (0.5H, dd, J = 13.7 Hz, J = 4.1 Hz), 3.34 (0.5H, dd, J = 13.9 Hz, J = 4.4 Hz), 2.87–2.77 (1H, m), 2.72–2.53 (1H + 1H, m), 2.40–2.22 (1H, m), 2.10–1.96 (1H + 0.5H, m), 1.92–1.85 (0.5H, m), 1.80–1.54 (0.5H + 0.5H + 1H, m). ¹³C NMR (CDCl₃, 125.8 MHz) δ *cis*

171.7, 138.4, 129.2, 128.6, 126.7, 102.3–97.9 (6C, m), 74.4, 42.5, 37.6, 37.4 (t, J = 21.2 Hz), 29.6, 24.9; *trans* 173.6, 138.6, 129.1, 128.6, 126.7, 117.6–113.2 (6C, m), 70.8, 39.9, 36.7, 36.6 (t, J = 21.3 Hz), 27.3, 22.3. ¹⁹F NMR (CDCl₃, 470 MHz) δ –81.7 (3F, t, J = 9.6 Hz), –112.5 to –114.6 (2F, m), –122.7 (2F, s), –123.8 (2F, s), –124.5 (2F, s), 127.1 (2F, q, J = 9.4 Hz). EI-MS (m/z) 522 (M⁺, 69), 91 (100). HRMS cacld for C₁₉H₁₅O₂F₁₃: 522.0864, found: 522.0864.

Acknowledgement

This research work was supported by the National Natural Science Foundation of China (Grant no. 20672034).

References

- [1] F. Bennett, D.W. Knight, G. Fenton, J. Chem. Soc. Perkin Trans. 1 (1991) 133–140.
- [2] N. Acton, R.J. Roth, J. Org. Chem. 57 (1992) 3610–3614.
- [3] C. Wang, G.A. Russell, J. Org. Chem. 64 (1999) 2066–2069.
- [4] (a) I. Ojima, J.R. McCarthy, J.T. Welch, ACS Symposium Series 639 American Chemical Society, Washington, DC, 1996;
 (b) T. Itoh, K. Kudo, K. Yokota, N. Tanaka, S. Hayase, M. Renou, Eur. J. Org. Chem. (2004) 406–412.
- [5] N.O. Brace, J. Org. Chem. 29 (1964) 1247-1249.
- [6] (a) X.W. Zou, F.H. Wu, Y.J. Shen, S. Xu, W.Y. Huang, Tetrahedron 59 (2003) 2555–2560;

(b) F.H. Wu, X.Y. Yang, Z.H. Wang, W.Y. Huang, J. Fluorine Chem. 128 (2007) 84–86;

(c) S.J. Mao, X. Fang, L. Ba, F.H. Wu, J. Fluorine Chem. 128 (2007) 5–11;

(d) X.Y. Yang, Y.P. Zhu, X. Fang, X.J. Yang, F.H. Wu, Y.J. Shen, J. Fluorine Chem. 128 (2007) 174–178;

(e) X.Y. Yang, Z.H. Wang, X. Fang, X.J. Yang, F.H. Wu, Y.J. Shen, Synthesis 12 (2007) 1768–1778.

- [7] (a) N.O. Brace, J. Fluorine Chem. 108 (2001) 147–175;
 (b) N.O. Brace, Paper 0.20 Presented at the Fourth International Symposium Organic Free Radicals Sponsored by the Royal Society of Chemistry, July 10, University of St. Andrews, Scotland, 1984.
- [8] (a) Q.Y. Chen, Z.Y. Yang, J. Fluorine Chem. 28 (1985) 399–411;
 (c) Z.Y. Yang, D.J. Burton, J. Fluorine Chem. 45 (1989) 435–439.
- [9] (a) N.O. Brace, J. Org. Chem. 27 (1962) 4491–4498;
 (b) N.O. Brace, J. Org. Chem. 36 (1971) 1904–1909.
- [10] W.M. Qiu, D.J. Burton, J. Org. Chem. 58 (1993) 419-423.
- [11] R.T. Conley, Infrared Spectroscopy, Second ed., Allyn and Bacon, Inc., Boston, 1966, pp. 143–150/167–173.